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Discussion of “Despiking Acoustic Doppler Velocimeter Data” 1 
by Derek G. Goring and Vladimir I. Nikora 

Tony L. Wahl2 

The writers are commended for their novel approach to the difficult problem of removing spikes 
from velocity time series recorded by acoustic Doppler velocimeters (ADV’s).  Their paper has 
prompted some further investigations into modifications that may make the method even more 
practicable and robust. 

To briefly review, spikes in ADV time series can be caused by many factors, including high 
turbulence intensities, aerated flows that have undesirable acoustic properties, and phase 
difference ambiguities that occur when velocities exceed the upper limits of ADV probe velocity 
ranges.  Although spikes can be reduced or eliminated in many cases by adjustment of probe 
operational parameters, there are some situations in which spikes cannot be entirely avoided.  A 
method for spike detection such as that proposed by the writers is thus necessary. 

The phase-space thresholding method set forth by the writers is based on the observation that 
good ADV data are tightly clumped within an ellipsoid in phase space [three-dimensional (3D) 
plots of velocity, u, and approximations of the first and second derivatives, ∆u and ∆2u, 
respectively].  Spikes are those points plotting outside of elliptical projections of the ellipsoid 
onto the three principal phase-space planes, u-∆u, ∆u-∆2u, and u-∆2u.  The first two ellipses are 
symmetric about both axes, while the third is rotated due to correlation between u and ∆2u; 
positive velocities are associated with negative second derivatives and vice-versa as the velocity 
tends to move back toward its average value when an extreme is reached.  The writers size the 
ellipsoid and the projected ellipses using the standard deviations of the u, ∆u, and ∆2u time series 
and a Universal Threshold parameter related to the length of the time series.  The Universal 
Threshold requires no tuning, a fundamental advantage of the algorithm.  The method is 
iterative, with spikes identified and replaced, and the algorithm repeated one or more times.  
Iteration is necessary because the standard deviations, and thus the ellipse boundaries, are 
sensitive to the spikes and change as spikes are identified and replaced.  The writers point out 
that spike replacement is an arbitrary procedure with many strategies available.  Spike 
replacement is necessary to use the iterative phase-space thresholding method, since derivative 
and second derivative estimates are needed in subsequent iterations. 

Identifying Points Outside of the Ellipsoid  

The use of two-dimensional (2D) ellipse projections requires that three comparisons be made to 
determine if a data point is a spike, one in each principal plane.  For each comparison the 
distance of the data point from the center of the ellipse must be determined and compared to the 
corresponding distance to a point on the ellipse located along the ray connecting the center of the 
ellipse and the data point.  Spikes are ultimately identified if they are located outside of a 
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good data. 
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 b are the major and minor axes of the ellipse projected onto the u-∆2u plane, as 
s. (10) and (11), and c is the major axis in the ∆u-∆2u projection, identified by the 

Uσ∆u.  Here, the symbol α indicates the angle of rotation of the ellipsoid in the u-∆2u 
 by the writers’ Eq. (9).  (The writers used the symbol θ for this parameter, which is 

here in connection with the spherical coordinate system).  The ellipsoid in Eq. (1) is 
the origin, requiring one to remove the mean of the velocity time series before testing 

dentify points outside of the ellipsoid is performed in a manner similar to that 
bove.  The position of the u, ∆u, ∆2u data point is expressed in spherical coordinates 
e ρ and the angles φ and θ.  The distance ρe to a point on the surface of the ellipsoid 
φ and θ coordinates is determined from Eq. (1) and ρ and ρe are compared to 
f the point is inside or outside the ellipsoid. 

pike-Detection Threshold 

plied in 3D phase-space, the method described by the writers is similar to one-
l methods for excluding outliers from experimental data.  Points lying outside of a 
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threshold are marked as outliers and removed, or 
optionally replaced.  The threshold used by the 
writers is )ln(2 Nσ , in which σ is the standard 
deviation and N is the number of points.  The easily 
calculated multiplier )ln(2 NU =λ is the Universal 
Threshold, described as the theoretical expected 
maximum value of N independent samples drawn 
from a standard normal distribution.  Thresholds are 
computed for the three phase-space axes, u, ∆u, and 
∆2u, and these values are used for the ellipse-based 
tests described earlier. 

The writers noted that the Universal Threshold is 
about 10% larger than expected for N>1000.  If the 
threshold were truly the expected maximum value of 
N independent samples, then we should expect that 
the performance of the exclusion method would be 
independent of the value of N.  To test this, the 
expected number of observations rejected can be 
determined by computing the threshold, )ln(2 N , 
and determining the corresponding rejection probability from a two-tailed standard-normal 
probability table.  The expected number of rejections varies slightly with N, as shown in fig. 11, 
starting at about 0.5 and decreasing as N increases. 

 
Figure 10. — Spherical coordinates and 

phase space coordinates. 

Another common method for excluding outliers from experimental data uses Chauvenet’s 
criterion (Coleman and Steele 1999).  For a set of N data, a rejection probability is computed, 
p=1/(2N), and the Z-statistic for this probability is determined from a two-tailed normal 
probability table.  The Z-statistic for each observation is then computed, Z=(x-µ)/σ.  Those 
observations outside of the ±Z range are excluded.  The expected number of observations 
excluded is always N/(2N), or 0.5, assuming the 
data are drawn from a standard-normal 
distribution.  This approach has the property we 
expected for the Universal Threshold; the 
performance is independent of the size of the 
sample, and we always stand a coin-flip chance 
of excluding one observation from a true 
normally distributed data set.  Chauvenet’s 
criterion should be applied only once to a given 
data set. 
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Figure 11. — Expected number of rejections 

from a normally distributed data set of N 
elements, using the Universal Threshold. 

For an automated despiking algorithm, an easily 
calculated threshold is desirable.  Chauvenet’s 
criterion can be determined without using 
lookup tables, since standard-normal probability 
values can be computed using the error 
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function, erf(x), determined by series approximation (Kreyszig 1988) 
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Eq. (2) converges quickly for small values of x, but may require j=30 to 40 terms for x>5.  The 
rejection probability for the two-tailed case for a standardized observation, Z=(x-µ)/σ 
is )/( 2erf1 Zp −= and the Z-statistic for a given rejection probability is )1( erfinv 2 p−=Z .  
The inverse of the error function, erfinv(1-p), can be determined by Newton’s method making 
use of subroutines that return the error function and its derivative. 

Robustness of the Despiking Threshold 

Regardless of the threshold chosen, a method that is insensitive to the outliers themselves is 
desirable.  The despiking algorithm presented by the writers uses the mean and standard 
deviation, the classic estimators for location (general position of the data) and scale (spread of 
the data), respectively.  Rousseeuw (1998) shows that both are very sensitive to outliers, having a 
breakdown point of 1/N.  The breakdown point is the smallest fraction of the values that must be 
replaced with outliers to carry the estimator over all bounds.  One may choose which 
observations to replace, as well as the magnitude of the outliers, in the most unfavorable way. 

When outlier exclusion is based on the mean and standard deviation, a single outlier of 
extraordinary magnitude can corrupt both parameters and significantly affect performance.  The 
location estimator moves toward the outlier and away from the good data, and the scale estimator 
explodes, protecting the outliers from rejection.  If outlier-exclusion is performed iteratively, the 
result will improve as outliers are excluded, assuming that the initial iterations exclude some 
outliers and are not so seriously affected that they exclude non-outlying data. 

Outlier-exclusion can be improved by using robust location and scale estimators.  A robust 
estimator of location is the sample median.  The median has the largest possible breakdown 
point, 50%, meaning that one must replace at least half the values to ensure that the estimator 
will exceed the range of the original data.  An extremely robust estimator of scale is based upon 
the median of the absolute deviations (MAD) from the sample median, 

( ) (MAD)483.1)(medianmedian483.1 ,...,1,...,1 =−= == inijnj xxS  (3) 

in which 1.483 is a factor that makes the estimator analogous to the standard deviation, the usual 
scale parameter of a normal distribution.  This estimator also has a breakdown point of 50%. 

An outlier-exclusion algorithm described by Rousseeuw (1998) computes the standardized 
observations, .  The median is used for the location estimator, T, and the scale 
estimator, S, is based upon the MAD as shown in Eq. (3).  The absolute values of the 
standardized observations are compared to a cutoff value, somewhat arbitrarily chosen as 2.5, 
and observations above the cutoff are outliers.  The cutoff could also be established using the 
Universal Threshold or Chauvenet’s criterion.  Regardless, the algorithm need only be applied 

STxZ ii /)( −=
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once, as the estimators of location and scale will change only slightly after removal of the 
outliers. 

Application to Multidimensional Velocity Time Series 

The phase-space threshold despiking method is described by the writers for application to the 
time series of a single component of velocity.  Most ADV probes report three-dimensional 
velocities (or 2D in some cases).  The reported orthogonal velocity components are 
interdependent, since the instrument actually measures beam velocities along the bi-static axes of 
the sending and receiving acoustic elements and converts these to orthogonal velocity 
components via multiplication by a transformation matrix (Kraus et al. 1994).  Factors that 
produce spikes often affect only one of the individual beam velocities (e.g., overranging caused 
by a large turbulent velocity burst aligned with one of the bi-static axes, or a single air bubble 
corrupting one acoustic beam), but after multiplication by the transformation matrix, the single 
affected beam velocity taints all three of the orthogonal velocity components.  As a result, a 
conservative filtering algorithm should eliminate and/or replace associated data points in all three 
time series when a spike is identified in any one time series, even if the data in the other time 
series do not appear to be spikes. 

Robust Phase-Space Despiking Algorithm 

A despiking algorithm based on the writers’ phase-space thresholding method and incorporating 
the concepts discussed above was developed and added to the WinADV computer program, a 
freely distributed software packaged used for post-processing and analysis of ADV data (Wahl 
2000).  WinADV was developed primarily for use by the Bureau of Reclamation’s Water 
Resources Research Laboratory, where ADV’s are used to collect laboratory and field data 
around model and prototype hydraulic structures and in reservoirs and natural channels.  The 
primary objective of these measurements is usually to define average velocities and turbulence 
parameters in two or three dimensions. 

The modified algorithm incorporates the following features to create a robust, conservative 
despiking method whose performance is independent of the length of the ADV time series. 

• The median and MAD are used as location and scale estimators, 

• Chauvenet’s criterion is used to define the rejection probability and exclusion thresholds 
(principal axes of the ellipsoid in phase space), 

• The exclusion test uses the true ellipsoid shaped defined in spherical coordinates, and 

• Despiking is performed on each of the available velocity components (usually three), and 
all associated data are removed when a spike is detected in any one of the time series. 

Before despiking, the median of each velocity time series is removed.  Alternatively, one could 
high-pass filter the data as described by the writers.  Spike replacement is not used, since the 
algorithm is no longer iterative and does not require replacement of spikes.  For most 
applications of ADV’s at the Bureau of Reclamation, a continuous time series is not needed, and 
a data set that does not contain synthesized or interpolated data is desirable. 
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Example Application 

The method described above was applied to the two data sets examined by the writers.  The 
results are compared in Table 1 to the writers’ method.  The modified method identifies more 
spikes than the writers’ method in three different ways: 

• Excluding data within the knobs of the “knobby” ellipsoid, 

• Reducing the size of the ellipsoid by using the MAD as the scale estimator and 
Chauvenet’s criterion to define the rejection probability and exclusion thresholds, and 

• Examining all velocity components and rejecting associated data in all time series when a 
spike is detected in any one component. 

Analysis 

The modifications to the writers’ method each identify more spikes, with the greatest effects in 
these examples being caused by the reduction of the exclusion thresholds and the examination of 
all three associated time series.  The number of additional spikes located in the knobs of the 
knobby ellipsoid was relatively small. 

In the contaminated data set, examination of the v and w velocity components added about 25% 
more spikes than were detected in the u component, and of these, about two-thirds came from the 

 
Length of time series 

Goring-Nikora method (U
Standard deviation of u b
Spikes identified in u in f
Standard deviation of u a
(spikes removed, but not
Standard deviation of u a
(spikes replaced using cu

Effect of 3-D ellipsoid test
Spikes in u in first iterati
Additional spikes in v an

Robust despiking algorith
velocity components 

1.483(MAD) of u before
Spikes identified in u tim
Additional spikes in v an
1.483(MAD) of u after d
Standard deviation of u a
Table 1. — Comparison of despiking methods. 

Contaminated record Clean record 
30,000 samples 30,000 samples 

niversal Threshold) 
efore despiking 23.52 cm/s 8.058 cm/s 
irst iteration 858 14 
fter one iteration 
 replaced) 14.68 cm/s 8.050 cm/s 

fter four iterations 
bic fit) 13.78 cm/s . . . 

 (Eq. 12) and identifying spikes in all velocity components 
on 880 20 
d w time series 229 160 

m using MAD, Chauvenet’s criterion, 3-D ellipsoid test, and all 

 despiking 13.55 cm/s 7.904 cm/s 
e series 2149 49 
d w time series 474 415 
espiking 12.89 cm/s 7.845 cm/s 
fter despiking 13.19 cm/s 7.994 cm/s 
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w component.  In the clean data set, the v and w components added about 8 times more spikes 
than were found in the u component alone, and about 85% were due to the w component.  These 
results were similar, regardless of which threshold was used (the Universal Threshold or the 
MAD and Chauvenet’s criterion).  The relatively large number of additional spikes found in the 
w component may be an anomaly of these two data sets; the writers reported that in their 
experience with down-looking ADV probes the vertical component (w in these cases) usually 
contains far fewer spikes than the horizontal components. 

Using the MAD and Chauvenet’s criterion to define the rejection thresholds significantly 
increases the number of spikes in comparison to the first iteration of the writers’ method, 
although subsequent iterations would identify additional spikes.  The advantages of the approach 
utilizing the MAD are the robustness and insensitivity to the spikes themselves, and the fact that 
despiking need not be done iteratively. 

The methods can also be evaluated by comparing the standard deviations and median absolute 
deviations before and after despiking, shown in Table 1.  In the clean record, the standard 
deviations and the values of 1.483(MAD) are similar before and after despiking.  This is 
expected, since the outliers in this data set are few in number and not extreme.  In the 
contaminated record (which the writers aptly describe as pathological), the standard deviation of 
the u time series is reduced dramatically from 23.52 cm/s to 14.68 cm/s by the first iteration of 
the writers’ method.  Four iterations of despiking and spike replacement reduce the standard 
deviation to a final value of 13.78 cm/s.  In comparison, the value of 1.483(MAD) is 13.55 cm/s 
before despiking, comparable to the standard deviation after despiking.  The robust despiking 
method reduces the value modestly to 1.483(MAD)=12.89 cm/s, demonstrating that this scale 
estimator is relatively insensitive to spikes and is a reasonable approximation to the standard 
deviation.  The final standard deviation of u after applying the robust despiking method is 
13.19 cm/s. 
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